Exercise 5

Solve Example 1.6.2 with the boundary conditions

$$
u_{x}(0, t)=0=u_{x}(\ell, t) \quad \text { for } t>0,
$$

leaving the initial condition (1.6.38) unchanged.

Solution

The temperature distribution $u(x, t)$ in a homogeneous rod of length l with diffusivity constant κ satisfies the following initial boundary value problem:

```
\(u_{t}=\kappa u_{x x}, \quad 0<x<\ell, t>0\)
\(u_{x}(0, t)=0, \quad t>0\)
\(u_{x}(\ell, t)=0, \quad t>0\)
\(u(x, 0)=f(x), \quad 0 \leq x \leq \ell\).
```

The PDE and the boundary conditions are linear and homogeneous, which means that the method of separation of variables can be applied. Assume a product solution of the form, $u(x, t)=X(x) T(t)$, and substitute it into the PDE and boundary conditions:

$$
\begin{align*}
& X(x) T^{\prime}(t)=\kappa X^{\prime \prime}(x) T(t) \quad \rightarrow \quad \frac{T^{\prime}(t)}{\kappa T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=k \tag{1.5.1}\\
& u_{x}(0, t)=0 \quad \rightarrow \quad X^{\prime}(0) T(t)=0 \quad \rightarrow \quad X^{\prime}(0)=0 \\
& u_{x}(\ell, t)=0 \quad \rightarrow \quad X^{\prime}(\ell) T(t)=0 \quad \rightarrow \quad X^{\prime}(\ell)=0 .
\end{align*}
$$

The left side of equation (1.5.1) is a function of t, and the right side is a function of x. Therefore, both sides must be equal to a constant. Values of this constant and the corresponding functions that satisfy the boundary conditions are known as eigenvalues and eigenfunctions, respectively. We have to examine three special cases: the case where the eigenvalues are positive $\left(k=\mu^{2}\right)$, the case where the eigenvalue is zero $(k=0)$, and the case where the eigenvalues are negative ($k=-\lambda^{2}$). The solution to the PDE will be a linear combination of all product solutions.

Case I: Consider the Positive Eigenvalues $\left(k=\mu^{2}\right)$
Solving the ordinary differential equation in (1.5.1) for $X(x)$ gives

$$
\begin{aligned}
X^{\prime \prime}(x) & =\mu^{2} X(x), \quad X^{\prime}(0)=0, X^{\prime}(\ell)=0 . \\
X(x) & =C_{1} \cosh \mu x+C_{2} \sinh \mu x \\
X^{\prime}(x) & =C_{1} \mu \sinh \mu x+C_{2} \mu \cosh \mu x \\
X^{\prime}(0) & =C_{2} \mu=0 \quad \rightarrow \quad C_{2}=0 \\
X^{\prime}(\ell) & =C_{1} \mu \sinh \mu \ell=0 \quad \rightarrow \quad C_{1}=0 \\
X(x) & =0
\end{aligned}
$$

Positive values of k lead to the trivial solution, $X(x)=0$. Therefore, there are no positive eigenvalues and no associated product solutions.

Case II: Consider the Zero Eigenvalue $(k=0)$

Solving the ordinary differential equation for $X(x)$ in (1.5.1) gives

$$
\begin{aligned}
& X^{\prime \prime}(x)=0, \quad X^{\prime}(0)=0, X^{\prime}(\ell)=0 . \\
& X(x)=C_{1} x+C_{2} \\
& X^{\prime}(x)=C_{1} \\
& X^{\prime}(0)=X^{\prime}(\ell)=C_{1} \quad \rightarrow \quad C_{1}=0 \\
& X(x)=C_{2}
\end{aligned}
$$

$k=0$ leads to a nontrivial solution for $X(x)$, so zero is an eigenvalue. Solving the ordinary differential equation for $T(t), T^{\prime}(t)=0$, gives $T(t)=C_{3}$. The product solution associated with the zero eigenvalue is thus a constant.

Case III: Consider the Negative Eigenvalues $\left(k=-\lambda^{2}\right)$

Solving the ordinary differential equation for $X(x)$ in (1.5.1) gives

$$
\begin{aligned}
& X^{\prime \prime}(x)=-\lambda^{2} X(x), \quad X^{\prime}(0)=0, X^{\prime}(\ell)=0 . \\
& X(x)=C_{1} \cos \lambda x+C_{2} \sin \lambda x \\
& X^{\prime}(x)=-C_{1} \lambda \sin \lambda x+C_{2} \lambda \cos \lambda x \\
& X^{\prime}(0)=C_{2} \lambda=0 \quad \rightarrow \quad C_{2}=0 \\
& X^{\prime}(\ell)=-C_{1} \lambda \sin \lambda \ell=0 \\
& \sin \lambda \ell=0 \quad \rightarrow \quad \lambda \ell=n \pi, n=1,2, \ldots \\
& X(x)=C_{1} \cos \lambda x
\end{aligned} \quad \lambda_{n}=\frac{n \pi}{\ell}, n=1,2, \ldots .
$$

The eigenvalues are $k=-\lambda_{n}^{2}=-\left(\frac{n \pi}{\ell}\right)^{2}$, and the corresponding eigenfunctions are $X_{n}(x)=\cos \frac{n \pi x}{\ell}$. Solving the ordinary differential equation for $T(t), T^{\prime}(t)=-\kappa \lambda^{2} T(t)$, gives $T(t)=C_{3} e^{-\kappa \lambda^{2} t}$. The product solutions associated with the negative eigenvalues are thus $u_{n}(x, t)=X_{n}(x) T_{n}(t)=e^{-\kappa \lambda_{n}^{2} t} \cos \frac{n \pi x}{\ell}$ for $n=1,2, \ldots$.

According to the principle of superposition, the solution to the PDE is a linear combination of all product solutions:

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} e^{-\kappa\left(\frac{n \pi}{\ell}\right)^{2} t} \cos \frac{n \pi x}{\ell} .
$$

The coefficients, A_{0} and A_{n}, are determined from the initial condition, so set $t=0$:

$$
\begin{equation*}
u(x, 0)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{\ell}=f(x) . \tag{1.5.2}
\end{equation*}
$$

To determine A_{0}, simply integrate both sides of equation (1.5.2) with respect to x from 0 to ℓ.

$$
\begin{aligned}
& \int_{0}^{\ell} A_{0} d x+\int_{0}^{\ell} \sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{\ell} d x=\int_{0}^{\ell} f(x) d x \\
& A_{0} \ell+\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{\ell} \cos \frac{n \pi x}{\ell} d x}_{=0}=\int_{0}^{\ell} f(x) d x
\end{aligned}
$$

$$
A_{0}=\frac{1}{\ell} \int_{0}^{\ell} f(x) d x
$$

To determine A_{n}, multiply both sides of equation (1.5.2) by $\cos \frac{m \pi x}{\ell}$ and integrate both sides with respect to x from 0 to ℓ. (m is a positive integer.)

$$
\begin{gathered}
A_{0} \cos \frac{m \pi x}{\ell}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{\ell} \cos \frac{m \pi x}{\ell}=f(x) \cos \frac{m \pi x}{\ell} \\
\int_{0}^{\ell} A_{0} \cos \frac{m \pi x}{\ell} d x+\int_{0}^{\ell} \sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{\ell} \cos \frac{m \pi x}{\ell} d x=\int_{0}^{\ell} f(x) \cos \frac{m \pi x}{\ell} d x \\
A_{0} \underbrace{\int_{0}^{\ell} \cos \frac{m \pi x}{\ell} d x}_{=0}+\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{\ell} \cos \frac{n \pi x}{\ell} \cos \frac{m \pi x}{\ell} d x}_{=\frac{\ell}{2} \delta_{n m}}=\int_{0}^{\ell} f(x) \cos \frac{m \pi x}{\ell} d x \\
A_{n} \frac{\ell}{2}=\int_{0}^{\ell} f(x) \cos \frac{n \pi x}{\ell} d x \\
A_{n}=\frac{2}{\ell} \int_{0}^{\ell} f(x) \cos \frac{n \pi x}{\ell} d x
\end{gathered}
$$

It is thanks to the orthogonality of the trigonometric functions that most terms in the infinite series vanish upon integration. Only the $n=m$ term remains, and this is denoted by the Kronecker delta function,

$$
\delta_{n m}=\left\{\begin{array}{ll}
0 & n \neq m \\
1 & n=m
\end{array} .\right.
$$

